# Conformation of cis-Stilbene and Some Derivatives studied by Nuclear Magnetic Relaxation Measurements 

By Frank Heatley,* Michael K. Cox, and Anne Jones, Chemistry Department, University of Manchester, Manchester M13 9PL<br>Brian Jacques, Pharmacy Department, Portsmouth Polytechnic, Portsmouth

The spin-lattice relaxation times and nuclear Overhauser enhancements (NOE) have been measured for the olefinic protons of cis-stilbene and a few derivatives in dilute solution in $\mathrm{CDCl}_{3}$. The results confirm the propeller conformation suggested previously on the basis of the electronic spectrum. The angle of twist is in the range $20-40^{\circ}$.

The conformation of cis-stilbene is the result of a compromise between $\pi$-orbital resonance, which favours a conformation with the two aromatic rings and the olefinic bond all coplanar, and steric interaction of ortho-protons which favours the conformation with both aromatic rings perpendicular to the plane of the olefinic bond. Previous theoretical calculations ${ }^{1}$ and experimental studies of u.v. spectra ${ }^{2,3}$ have suggested that this conflict is resolved in the form of a propeller conformation of $C_{2}$ symmetry in which the aromatic rings are rotated by ca. $30^{\circ}$ from the plane of the olefinic bond. Direct evidence for this structure is lacking however, and it is the purpose of this paper to fill this gap.
Noggle and Schirmer ${ }^{4}$ have shown how measurements of spin-lattice relaxation times ( $T_{1}$ ) and nuclear Over-

[^0]hauser enhancements (NOE) can provide quantitative details of molecular structure, and many applications have been reported. ${ }^{5,6}$ We have made such measurements on cis-stilbene and two derivatives (I) and (II) in order to determine the conformation of the aromatic rings.


The relaxation time of the olefinic proton $\left(\mathrm{H}_{\alpha}\right)$ is determined to a large extent by intramolecular dipolar
${ }^{4}$ J. H. Noggle and R. E. Schirmer, ' The Nuclear Overhauser Effect,' Academic Press, New York, 1971.
${ }_{5}$ R. Rowan, J. A. McCammon, and B. D. Sykes, J. Amer. Chem. Soc., 1974, 96, 4773.
${ }^{6}$ R. T. Brown, F. Heatley, D. Moorcroft, and J. A. Ladd, J.C.S. Chem. Comm., 1973, 459.
interactions with the ortho-protons. This contribution, designated $T_{1 \alpha}^{\mathrm{d}}$, is given by equation (1) where $\gamma_{H}$ is the

$$
\begin{equation*}
1 / T_{1 \alpha}^{\mathrm{d}}=\gamma_{\mathrm{H}}^{4} \hbar^{2} \tau_{\mathrm{c}}\left(1 / r_{\alpha 2}^{6}+1 / r_{\alpha 2}^{6}\right) \tag{1}
\end{equation*}
$$

${ }^{1} \mathrm{H}$ magnetogyric ratio, $\hbar$ is Planck's constant divided by $2 \pi, r_{\alpha 2}$ and $r_{\alpha 6}$ are the internuclear distances, and $\tau_{c}$ is the correlation time for molecular rotation, assumed isotopic. Thus if $T_{1 \alpha}^{\mathrm{d}}$ and $\tau_{0}$ can be measured, the distances $r_{\alpha 2}$ and $r_{\alpha 6}$ can be determined and hence the conformation of the aromatic ring.

In practice there are other contributions to proton relaxation, such as other intramolecular dipolar interactions, solute-solute and solute-solvent intermolecular interactions, and interactions with paramagnetic impurities. Lumping these other sources into an 'external' relaxation time $T_{1_{\alpha}}^{\mathrm{x}}$, the measured relaxation time $T_{1 \alpha}$ is given by: $1 / T_{1 \alpha}=1 / T_{1 \alpha}^{\mathrm{x}}+1 / T_{1 \alpha}^{\mathrm{d}} . \quad T_{1 \alpha}^{\mathrm{d}}$ and $T_{1 \alpha}^{\mathrm{x}}$ can be separately determined by measuring the $\mathrm{NOE}^{4}$ of $\mathrm{H}_{\alpha}$ when the ortho-protons are completely saturated. Defining the NOE factor $\eta_{\alpha}$ in the usual way by $\eta_{\alpha}=$ $\left(I_{\mathrm{d}}-I_{\mathrm{o}}\right) / I_{\mathrm{o}}$ where $I_{\mathrm{d}}$ and $I_{o}$ are the $H_{\alpha}$ signal intensities with the ortho-protons saturated and not saturated respectively, then for ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ interactions equation (2) applies. $\tau_{c}$ can be obtained from the ${ }^{13} \mathrm{C}$ spin-lattice

$$
\begin{equation*}
\eta_{\alpha}=T_{1 \alpha} / 2 T_{1_{\alpha}}^{\mathrm{d}} \tag{2}
\end{equation*}
$$

relaxation times of ${ }^{13} \mathrm{CH}$ groups by measuring the contribution from dipolar interaction with protons. This is given by equation (3) where the sum is over the various $\mathrm{C}-\mathrm{H}$ distances in the molecule. In the majority of

$$
\begin{equation*}
1 / T_{1 \mathrm{O}}^{\mathrm{d}}=\gamma \sigma^{2} \gamma_{\mathrm{H}}^{2} \hbar^{2} \tau_{\mathrm{c}} \Sigma 1 / r_{\mathrm{OH}}^{\mathrm{o}} \tag{3}
\end{equation*}
$$

molecules, this contribution is the only significant one and moreover for ${ }^{13} \mathrm{CH}$ groups it is dominated by the interaction with the directly bonded proton. It can easily be separated if necessary from other relaxation sources by measuring the ${ }^{13} \mathrm{C}$ NOE factor $\left(\eta_{0}\right)$ when the protons are saturated. $\eta_{\mathrm{c}}$ is related to $T_{1 \mathrm{C}}^{\mathrm{d}}$ and the overall ${ }^{13} \mathrm{C}$ relaxation time $T_{10}$ by $\eta_{\mathrm{c}}=1.988 T_{1 \mathrm{c}} / T_{10}^{\mathrm{d}}$.

## EXPERIMENTAL

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spin-lattice relaxation times were determined at 100 and 25.14 Mhz respectively on a Varian Associates XL-100 fourier transform n.m.r. spectrometer using the standard $\pi-\tau-\pi / 2$ pulse sequence. ${ }^{13} \mathrm{C}$ NOE factors were obtained in the Fourier transform mode from the ratio of the intensity with the protons completely noise-decoupled to the intensity with the decoupling irradiation set 30 kHz off-resonance and in the continuous wave mode. ${ }^{1} \mathrm{H}$ NOE factors were obtained with the spectrometer in the continuous wave mode by comparing the integrals of spectra recorded first with the decoupling field set on the protons to be irradiated and then with the decoupling field set an equal offset on the order side of the peak being recorded.
ca. $10 \%$ ( $w / w$ ) Solutions in $\mathrm{CDCl}_{3}$ were used for ${ }^{13} \mathrm{C}$ measurements, and $1 \%$ (cis-stilbene) and 5\% [derivatives

[^1](I) and (II)] for ${ }^{1} \mathrm{H}$ measurements. All solutions were degassed and sealed in vacuo.

## RESULTS AND DISCUSSION

The ${ }^{13} \mathrm{C}$ spectra of all compounds showed the appropriate number of peaks, assuming that rotation of the aromatic rings was rapid enough to make the two orthoand two meta-positions in each ring equivalent on average. The chemical shifts were in no way remarkable, and a complete assignment was not made especially in view of the fact that for each compound the ${ }^{13} \mathrm{C}$ spin-lattice relaxation times for all ${ }^{13} \mathrm{C}-\mathrm{H}$ groups were identical within experimental error. This observation establishes that the molecular rotation is isotropic and therefore all dipolar relaxation mechanisms have the same correlation time. Furthermore the ${ }^{13} \mathrm{C}$ relaxation times were independent of concentration in the range $4-10 \% \mathrm{w} / \mathrm{w}$. The correlation time is therefore independent of concentration and can be transferred without correction from ${ }^{13} \mathrm{C}$ data for the more concentrated solutions to ${ }^{1} \mathrm{H}$ data for the more dilute solutions.

For all solutions $\eta_{c}$ was found to lie in the range $2.0 \pm$ 0.1. The ${ }^{13} \mathrm{C}$ relaxation times are therefore determined entirely by intramolecular dipolar interaction with protons. The major interaction is with the directly bonded proton but a small contribution arises from more distant protons, amounting to $4 \%$ in cis-stilbene and $1.5 \%$ in the derivatives (I) and (II).

This has been taken into account when evaluating the rotational correlation times which are listed in Table 1

Table 1
Relaxation times, NOE factors, and correlation times in $\mathrm{CDCl}_{3}$ solution at $30^{\circ}$

| Compound | $T_{1 \alpha} / \mathrm{s}$ | $\eta_{\alpha}$ | $T_{1 \mathrm{c}} / \mathrm{s}$ | $10^{22} \tau_{\mathrm{c}} / \mathrm{s}$ |
| :---: | :---: | :---: | :---: | :---: |
| cis-Stilbene | $\mathbf{1 0 . 5} \pm 0.5$ | $0.095 \pm 0.01$ | $6.0 \pm 0.4$ | $8.6 \pm 0.6$ |
| (I) | $6.0 \pm 0.3$ | $0.36 \pm 0.05$ | $1.1 \pm 0.1$ | $48 \pm 4$ |
| (II) | $5.6 \pm 0.3$ | $0.34 \pm 0.05$ | $1.4 \pm 0.1$ | $36 \pm 3$ |

together with the ${ }^{13} \mathrm{C}$ relaxation times. The geometry used to calculate internuclear distances is given in Figure 1, and is taken from published data on transstilbene. ${ }^{7}$


Figure 1 Geometry used for cis-stilbenc: bond lengths in $\AA$

The ${ }^{1} \mathrm{H}$ n.m.r. spectra of $c i s$-stilbene and some derivatives have been discussed at length elsewhere. ${ }^{8}$ In cisstilbene itself, the olefinic protons lie 0.7 p.p.m. upfield of the aromatic protons which themselves lie very close together, and it is straightforward to measure the relaxation times and Overhauser enhancements. The spectra
of the two other derivatives described here are rather different from cis-stilbene, though similar to each other. The spectrum of (1) is shown in Figure 2. The $\mathrm{H}_{\alpha}$ proton here is downfield of the aromatic $\mathrm{C}_{6} \mathrm{H}_{5}$ protons, presumably because of the nitro-group, while the ortho-protons are well removed from the $\mathrm{C}_{6} \mathrm{H}_{5}$ protons to high field. The ${ }^{1} \mathrm{H}$ relaxation data is also given in Table 1. The two derivatives give high values for $r_{\alpha}$, indicating that $\mathrm{H}_{\alpha}$ relaxation is due mainly to the interaction with the ortho-protons. $\eta_{\alpha}$ for cis-stilbene is much lower however


Figure : ${ }^{1}{ }^{1} \mathrm{H}$ N.m.r. spectrum of compound (I) at 100 MHz in $\mathrm{CDCl}_{3}$ solution
because of mutual relaxation of the two $\mathrm{H}_{\alpha}$ protons in close proximity.

To determine the conformation of the aromatic rings, we have chosen to calculate $T_{1}{ }^{\text {d }}$ expected for various propeller conformations using the correlation times in Table 1 and the geometry in Figure 1, and compare these values with the experimental value calculated using equation (2). The results are shown in Table 2. For cis-stilbene, there is reasonable agreement for rotations in the region $30-40^{\circ}$. This agrees well with the $30^{\circ} / 30^{\circ}$ propeller conformation suggested by Beveridge and Jaffe ${ }^{2}$ and the $28^{\circ} / 28^{\circ}$ conformation suggested by Suzuki, ${ }^{8}$ both based on u.v. spectra combined with MO calculations. A higher estimate of $50^{\circ}$ was given by

Stegenmeyer and Rapp ${ }^{1}$ based on semi-empirical potential energy calculations. We have also calculated the non-bonded interaction potential energy using potential functions given by Abraham and Parry ${ }^{9}$ and Warshel and Lifson. ${ }^{10}$ Taking the conformation with both rings perpendicular to the olefinic bond $\left(90^{\circ} / 90^{\circ}\right)$ as zero energy, then according to Abraham and Parry's functions, the non-bonded interaction energy increases to $30 \mathrm{~kJ} \mathrm{~mol}^{-1}$ at the $30^{\circ} / 30^{\circ}$ conformation and to 6 kJ $\mathrm{mol}^{-1}$ at $40^{\circ} / 40^{\circ}$. Warshel and Lifson's functions give energies of 80 and $16 \mathrm{~kJ} \mathrm{~mol}^{-1}$ for the $30^{\circ} / 30^{\circ}$ and $40^{\circ} / 40^{\circ}$

Table 2
Experimental and calculated values of $T_{1 \alpha}^{\mathrm{d}}$

|  |  | $T_{1}^{\mathrm{d}}$ (calc) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Compound | $T_{1 \alpha}^{\mathrm{d}}$ (exp) | $0^{\circ}$ | $10^{\circ}$ | $20^{\circ}$ | $30^{\circ}$ | $40^{\circ}$ |
| cis-Stilbene | $56 \pm 10$ | 35 | 37 | 40 | 45 | 60 |
| (I) | $8.4 \pm 1.5$ | 6.8 | 7.2 | 7.7 | 8.7 | 11.7 |
| (II) | 8.51 .5 | 8.7 | 9.2 | 9.8 | 11.1 | 15.0 |

conformations respectively. It is obvious that calculations of this type cannot give the angle of rotation with any precision. However steric interactions of this magnitude can easily be accommodated by resonance stabilisation which it is estimated can contribute 50 kJ $\mathrm{mol}^{-1}$ or so for rotations of $30-40^{\circ}$.

For the derivatives (I) and (II), the results in Table 2 favour rotation angles for the substituted ring of only $10-20^{\circ}$, a good deal lower than for cis-stilbene. A possible explanation for this is that the most favourable electron delocalisation involves donation of electrons into the $\pi$-system by the methoxy-groups and withdrawal by the nitro-group. This would lead to a greater partial double bond character of the bond linking the substituted ring and the olefinic group, and therefore a lower rotation ring and the olefinic group, and therefore a lower rotational angle for this ring. The $\mathrm{C}_{6} \mathrm{H}_{5}$ ring would in consequence be forced by steric repulsion into a greater degree of rotation than cis-stilbene, but there is no wayof checking this point by the methods employed here.
[5/1422 Reccived, 18th July, 1975]

[^2]
[^0]:    ${ }^{1}$ H. Stegenmeyer and W. Rapp, Ber. Bunsengesellschaft Phys. Chem., 1971, 75, 1165.
    ${ }^{2}$ D. L. Beveridge and H. H. Jaffé, J. Amer. Chem. Soc., 1965, 87, 5340.
    ${ }_{3}$ H. Suzuki, Bull. Chem. Soc. Japan, 1960, 33, 379, 389.

[^1]:    7 'Tables of Interatomic Distances,' ed. L. E. Sutton, Special Publication No. 11, The Chemical Society, London, 1958, Supplement 1962.
    ${ }^{8}$ H. Guesten and M. Salzwedel, Tetrahedron, 1967, 23, 173.

[^2]:    ${ }^{9}$ R. J. Abraham and K. Parry, J. Chem. Soc. (B), 1970, 534. 10 A. Warshel and S. Lifson, J. Chem. Phys., 1970, 53, 582.

